\(\def \u#1{\,\mathrm{#1}}\)
\(\def \us#1{\,\mathrm{\scriptsize #1}}\)
\(\def \abs#1{\left|#1\right|}\)
\(\def \ast{*}\)
\(\def \deg{^{\circ}}\)
\(\def \tau{\uptau}\)
\(\def \ten#1{\times 10^{#1}}\)
\(\def \redcancel#1{{\color{red}\cancel{#1}}}\)
\(\def \BLUE#1{{\color{blue} #1}}\)
\(\def \RED#1{{\color{red} #1}}\)
\(\def \PURPLE#1{{\color{purple} #1}}\)
\(\def \th#1,#2{#1,\!#2}\)
\(\def \lshift#1#2{\underset{\Leftarrow\atop{#2}}#1}}\)
\(\def \rshift#1#2{\underset{\Rightarrow\atop{#2}}#1}}\)
\(\def \dotspot{{\color{lightgray}{\circ}}}\)
\(\def \ccw{\circlearrowleft}\)
\(\def \cw{\circlearrowright}\)
How Things Move
Why Things Move
displacement vectors
- Displacement (\(\Delta x\)) measured in meters (m)
\(\Delta A=A_f-A_i\)
\(A_f=A_i+\Delta A\)
frame of reference
inertial
\(v_f=v_i+a\Delta t\)
\(\Delta x=\frac12(v_i+v_f)\Delta t\)
In a one-dimensional constant-acceleration problem,
we must be given three of the five variables
in order to solve for the rest.
don't-know-don't-care
$$\begin{align}
v_f&=v_i+a\Delta t &\color{blue}{\hbox{no}\,\Delta x}\\
\Delta x&=\frac{1}{2}(v_i+v_f)\Delta t &\color{blue}{\hbox{no}\,a}\\
\Delta x&=v_i\Delta t+\frac12a\Delta t^2 &\color{blue}{\hbox{no}\,v_f}\\
\Delta x&=v_f\Delta t-\frac12a\Delta t^2 &\color{blue}{\hbox{no}\,v_i}\\
v_f^2&=v_i^2+2a\Delta x &\color{blue}{\hbox{no}\,\Delta t}\\
\end{align}$$