\(\def \u#1{\,\mathrm{#1}}\)
\(\def \abs#1{\left|#1\right|}\)
\(\def \ast{*}\)
\(\def \deg{^{\circ}}\)
\(\def \tau{\uptau}\)
\(\def \ten#1{\times 10^{#1}}\)
\(\def \redcancel#1{{\color{red}\cancel{#1}}}\)
\(\def \BLUE#1{{\color{blue} #1}}\)
\(\def \RED#1{{\color{red} #1}}\)
\(\def \PURPLE#1{{\color{purple} #1}}\)
\(\def \th#1,#2{#1,\!#2}\)
\(\def \lshift#1#2{\underset{\Leftarrow\atop{#2}}#1}}\)
\(\def \rshift#1#2{\underset{\Rightarrow\atop{#2}}#1}}\)
\(\def \dotspot{{\color{lightgray}{\circ}}}\)
\(\def \ccw{\circlearrowleft}\)
\(\def \cw{\circlearrowright}\)
How Things Move
Why Things Move
ray
speed of light
index of refraction
\(c=3\ten8\u{m/s}\)
\(n={c\over v}\)
reflected ray
specular reflection
diffuse reflection
\(\theta_r = \theta_i\)
snell's law
When rays slow down, they bend towards the normal.
When rays speed up, they bend away from the normal.
\(n_i\sin\theta_i = n_t\sin\theta_t\)