\(\def \u#1{\,\mathrm{#1}}\) \(\def \abs#1{\left|#1\right|}\) \(\def \ast{*}\) \(\def \deg{^{\circ}}\) \(\def \tau{\uptau}\) \(\def \ten#1{\times 10^{#1}}\) \(\def \redcancel#1{{\color{red}\cancel{#1}}}\) \(\def \BLUE#1{{\color{blue} #1}}\) \(\def \RED#1{{\color{red} #1}}\) \(\def \PURPLE#1{{\color{purple} #1}}\) \(\def \th#1,#2{#1,\!#2}\) \(\def \lshift#1#2{\underset{\Leftarrow\atop{#2}}#1}}\) \(\def \rshift#1#2{\underset{\Rightarrow\atop{#2}}#1}}\) \(\def \dotspot{{\color{lightgray}{\circ}}}\) \(\def \ccw{\circlearrowleft}\) \(\def \cw{\circlearrowright}\)
Chapter 1: Equilibrium
19. (Problem Solving)

Solving Force Problems

Start by analyzing the forces in the system. (See Force Tables)

For each column of the tables, write the sum of the elements in that column.

If the number of equations is equal to the number of unknowns, then you will be able to solve for all the unknowns using algebra. If there are fewer equations, then you might be able to solve for some of the unknowns, but not all of them.

Example

A 8N block is being pulled on by a rope but does not move.